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Abstract
Marginal lands are increasingly being considered for cultivating industrial and 
bioenergy crops to reduce the direct and indirect land-use changes. This review 
investigates the feasibility of hemp (Cannabis sativa L.) cultivation under the 
biophysical constraints that characterize marginal lands, with the objectives of  
(i) determining to which extent hemp cultivation can be affected by the consid-
ered factors of marginality and (ii) determining the most pertinent adaptations of 
crop technical management. This work establishes that hemp is a species that can 
be considered particularly susceptible to adverse conditions, in particular regard-
ing soil characteristics (heavy clay, coarse sand, shallowness) and dry climates. 
Heavy metals (HMs) contaminations do not appear to severely limit hemp's pro-
ductivity, with the exception of thallium. The adverse effects of HMs on the prof-
itability of hemp cultivation rather lie in limitations of the potential uses of hemp 
biomass for several end-uses applications (e.g., textiles, food) because of the HM 
contents in the raw materials. On HM polluted soils, a single-use fiber produc-
tion destined to high-added value applications such as bio-based composites is 
the most suited production. Under dry climate, hemp productivity might be par-
ticularly affected depending on the soil quality and on the severity of the dryness. 
Hemp can be suited for mountain environments, in which the potential for har-
vesting the threshing residues as a source for medical application of cannabinoids 
might provide a supplemental added-value to the crop. Overall, although hemp 
has often been considered as able to grow in harsh conditions, this review high-
lights that care should be given to such statements and hemp appears to be more 
suited for integrating conventional agro-systems, in particular considering that it 
can be considered both as a food and industrial crop.
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1   |   INTRODUCTION

The world's population reached 7.8 billion people in 2020 
and is expected to reach 9.7 billion people by 2050 accord-
ing to UN projections (UN, 2021). This will put ever more 
pressure on the environment due to the surging demand 
for agricultural products. To meet this challenge, global 
agricultural production must increase, by bringing more 
land into cultivation and by increasing land productivity 
through sustainable intensification (Tilman et al., 2011). 
Although food production remains the fundamental tar-
get of agricultural activities, the production of biomass 
for the expanding bio-based economy has put additional 
pressure on land use, leading to direct and indirect land-
use changes. The competition for land use between food 
and non-food crops became apparent in 2007–2008 when 
the production of bioenergy was associated to a global 
increase of food prices (McMichael, 2010; Ribeiro, 2013; 
Shortall, 2013).

To contribute to the targets of the European Green 
Deal, the circular economy action plan and the bioecon-
omy strategy, an increase in global agricultural produc-
tion can be achieved by cultivating the land considered as 
marginal, whose surface is estimated to be between 5 and 
58 Mha in Europe (Gerwin et al., 2018; Kluts et al., 2017). 
Marginal lands were recently described according to two 
dimensions involving bio-physical and socio-economic 
factors (Elbersen et al., 2017), with the idea that inherent 
bio-physical constraints lead to a marginal profitability 
of agricultural activities by affecting the yield and/or the 
quality of the biomass (Elbersen et al., 2017; Shortall, 2013; 
Strijker,  2005; Turley et al.,  2010). Elbersen et al.  (2017) 
classified these bio-physical factors in three main catego-
ries: (i) climatic factors (e.g., low and high temperatures, 
low or high precipitations), (ii) soil limiting factors (e.g., 
shallow rooting depth, stoniness, acidity, salinity, soil pol-
lutions), and (iii) topographic factors (e.g., steep slopes). 
Inherent abiotic stress factors (e.g., water stress, hypoxia, 
salinity, heavy metal [HM] contaminations) are a prevail-
ing cause of marginality, and plant tolerance to abiotic 
stresses was described as an increasingly important tar-
get for the cultivation of biomass crops on marginal lands 
(Quinn et al., 2015).

Perennial biomass crops (e.g., Miscanthus, Switchgrass, 
Giant reed) are good candidates for cultivation on mar-
ginal lands. They have low input requirements (Corno 
et al., 2014; Heaton et al., 2004; McCalmont et al., 2017), 
their cultivation cost is relatively low and being peren-
nial, they do not require annual re-establishment. Still, 
the low market value of their biomass and their high es-
tablishment costs renders their cultivation economically 
unattractive (Khanna et al., 2008; Witzel & Finger, 2016). 
Industrial crops having high-value applications for their 

biomass could be a valuable alternative to perennial bio-
mass crops on marginal lands.

Hemp (Cannabis sativa L.) is an industrial crop that 
can provide a diversity of raw materials for numerous 
industrial applications (Crini et al., 2020). Having been 
abandoned during the 20th century in most countries 
(Amaducci et al.,  2015), hemp suffers from a lack of 
research and development. Its genetic development re-
mains limited to a few main traits (e.g., fiber content and 
flowering time) (Salentijn et al., 2015; Thouminot, 2015) 
and the lack of specific harvesting machinery and pri-
mary transformation processes for high value appli-
cations (e.g. textiles) (Amaducci, Müssig, et al.,  2008) 
remain major bottlenecks in the large-scale diffusion 
of hemp. The limited market for hemp-based products, 
the lack of scale economy and the maturity issues of the 
hemp sector today represent a barrier to the development 
of hemp cultivation in Europe. Notwithstanding these 
issues, hemp is a high-yielding crop that was reported 
to produce up to 20 t ha−1 of dry biomass per cropping 
season in diverse environments (Italy, Latvia, Poland), 
under favourable conditions (Burczyk et al., 2008; Struik 
et al.,  2000; Tang et al.,  2016). Hemp inputs require-
ments are low, it does not require pesticides and has 
a low nitrogen demand, as shown by its low nitrogen 
critical dilution curve that is similar to that of C4 crops 
(Tang et al., 2017). Hemp has often been characterized as 
a crop tolerant to diverse abiotic stress factors (Angelova 
et al., 2004; Bourdot et al., 2017; Cao et al., 2021; Cheng 
et al., 2016; Citterio et al., 2003; Di Candilo et al., 2004; 
García-Tejero et al.,  2020; Linger et al.,  2002; Mohan 
et al.,  2015; Pietrini et al.,  2019; Rehman et al.,  2013; 
Rehman et al.,  2021; Rheay et al.,  2021; Satriani 
et al., 2021; Sipos et al., 2010; van den Broeck et al., 2008), 
as well as being a crop able to grow under harsh en-
vironmental conditions (Burczyk et al.,  2008; Huang 
et al., 2019; Parvez et al., 2021; Viswanathan et al., 2020). 
Such characteristics suggest that hemp has a high po-
tential for cultivation on marginal lands, although the 
profitability of hemp cropping on marginal lands was 
rarely addressed. Elbersen et al.  (2017) commented on 
the fact that studies investigating cropping on marginal 
lands usually tend to focus either on the socio-economic 
aspects, or on the aspects of the bio-physical constraints, 
but not both. In fact, hemp should only be considered for 
cultivation on marginal lands if it is profitable to do so, 
implying that the hemp crop must keep a good produc-
tivity under the bio-physical constraints of the marginal 
lands in question, compared with a cultivation on a good 
quality land.

Assessing the suitability of hemp cropping on mar-
ginal lands is the main objective of this work. To achieve 
it, this work will: (i) determine the effects of bio-physical 
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constraints on hemp productivity and on the quality of 
the biomass, (ii) determine the most suited targeted pro-
duction (e.g., dual-purpose production of seeds and stem, 
high-quality fiber production) and crop management ad-
aptations under given bio-physical constraints. The pres-
ent work will firstly present the main hemp products, their 
related end-applications, and the specificities of technical 
management for these given productions. Secondly, this 
work will review the effects of inherent bio-physical con-
straints on hemp productivity and biomass quality, with a 
special focus on HMs and water scarcity. In a third section, 
this work will propose adaptations to the production strat-
egies and crop management practices to cope with given 
bio-physical constraints. A general discussion addressing 
the sustainability of hemp cropping on marginal lands 
will conclude this work.

2   |   HEMP PRODUCTS AND 
PRODUCTION STRATEGIES

Hemp biomass can be divided into different fractions, 
each of them being of economic interest. The fiber con-
tained in the stem can be used, for example, for pro-
ducing cigarette paper (Rehman et al.,  2021), building 
material (Crini et al., 2020) or paper pulp (van der Werf 
et al., 1994). If the quality of the fiber is high enough, it 
can also be used as a substrate for high added-value appli-
cations such as bio-based composites (Musio et al., 2018; 
Müssig et al., 2020) or textile products (Vandepitte 
et al., 2020). The shives produced as by-products of fiber 
decortication can be used for animal bedding and build-
ing material (Nguyen et al.,  2016), the hemp leaves and 
inflorescences can be used for cosmetics and medical ap-
plications (Bertoli et al., 2010; Mead, 2017), and the seeds 
can be used for feed, food, and industrial purposes (Crini 
et al., 2020). Hemp may also be grown for bio-energy ap-
plications, using either the whole biomass or by-products 
of existing value chains. There are examples in literature 
of hemp having been studied as a potential feedstock 
for the production of bioethanol using the stems (Das 
et al., 2017; Viswanathan et al., 2021; Zhao et al., 2020), 
methane using the whole aboveground biomass (Kreuger 
et al., 2011; Prade et al., 2011), solid biofuel using prefer-
entially the shives, but also the stems or the whole above-
ground biomass (Burczyk et al., 2008; Rheay et al., 2021) 
and biodiesel using hempseed oil (Li et al., 2010; Parvez 
et al., 2021; Rheay et al., 2021).

Traditionally, hemp was cultivated for single-use fiber 
production (Amaducci, 2020; Tang et al., 2016). This pro-
duction strategy is now mainly used for producing a high-
quality fiber, and it requires monoecious or dioecious 
cultivars (e.g. “Kompolti,” “Carmagnola Selezionata”) to 

be sown at high densities (45–80 kg ha−1) and harvested at 
full-flowering, so as to maximise the yield and quality of 
the fiber (Blandinières & Amaducci, 2022; Liu et al., 2015; 
Mediavilla et al.,  2001; Westerhuis et al.,  2019). Sowing 
at high density reduces the secondary growth of the 
stems (Amaducci et al.,  2002), thus increasing the ratio 
of primary-to-secondary fiber (Amaducci et al.,  2002; 
Amaducci et al.,  2005; Keller et al.,  2001). This is im-
portant because the short lignified secondary fibers (Liu 
et al.,  2015; Mediavilla et al.,  2001) are undesirable as 
they cannot be used for high added-value applications 
(Westerhuis et al., 2019).

An alternative to single-use fiber production is the 
dual-purpose production of seeds and stems, which is 
currently the main production strategy in Europe (Tang 
et al.,  2016). Monoecious cultivars (e.g., “Futura 75,” 
“Félina 32”) sown at a density of 30–50 kg ha−1 are har-
vested at seed maturity with a conventional combine har-
vester. This sowing strategy maximises the yield of both 
fractions (Legros et al., 2013), although the late harvesting 
affects fiber quality and prevents its use in high added-
value applications (Westerhuis et al., 2019).

In places where the harvest of the threshing residues 
(flowers and leaves) is not prohibited (e.g., France), a 
multi-purpose production of stems, seeds, and thresh-
ing residues can be carried out. The threshing residues, 
which are by-products of seed separation, can be used for 
extracting biomolecules (e.g., phyto-cannabinoids, essen-
tial oils) of pharmaceutical interest or for cosmetic appli-
cations, thereby increasing the added-value of the crop. 
This production strategy requires to grow a monoecious 
cultivar (e.g., “Futura 75”) and to use a combine harvester 
equipped with a specific device for collecting the thresh-
ing residues.

A single-use seed production is common where stem 
processing facilities are absent, as in Canada. In this pro-
duction strategy, a relatively early-flowering monoecious 
cultivar (e.g. “Finola,” “Earlina 8”) is sown at relatively 
low density (20–30 kg ha−1) to maximise seed yield, but 
sowing densities lower than 20 kg ha−1 should be avoided 
as hemp's weed suppressing capacity decreases under this 
threshold (Legros et al., 2013).

When grown for bioenergy production, the bio-
mass yield (t ha−1) is the main driver of the energy yield 
(GJ ha−1) (Burczyk et al., 2008; Das et al., 2017; Seleiman 
et al.,  2013), and the producer should seek to attain 
high biomass yields rather than high biomass quality. 
This is achieved by sowing a late-flowering cultivar (e.g. 
“Carmagnola Selezionata,” “Dioica 88”) at relatively low 
densities: 20 kg ha−1 having been reported to be a good 
compromise for achieving a high biomass yield, for cop-
ing with weed competition and for reducing the seed cost 
(Legros et al., 2013).
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3   |   EFFECTS OF LAND 
MARGINALITY FACTORS ON HEMP 
PRODUCTIVITY AND BIOMASS 
QUALITY

As already stated, land marginality can be induced by 
inherent bio-physical constraints that include climatic 
factors, soil limiting factors and topographic factors. 
Socio-economic factors (e.g. evolution of the market 
prices of agricultural products, changes of agricultural 
policies, presence of primary processing centres) might 
also affect the profitability of agricultural activities, 
bringing a dynamic dimension to the concept of land 
marginality (Elbersen et al.,  2017). Land marginality 
might therefore be induced at diverse intensities of bio-
physical constraints depending on many contextual pa-
rameters. For this reason, the present work will focus 
on the sustainability of hemp cultivation under adverse 
bio-physical constraints that are susceptible to lead to 
land marginality.

Although the literature addressing hemp growth capac-
ity under bio-physical constraints has recently expanded, 
it remains limited to two main abiotic stress factors: HMs 
and water scarcity. The present work will therefore focus 
on these two bio-physical constraints; the effect on hemp 
of poor soil and land characteristics will also be investi-
gated. Other bio-physical constraints (e.g., salt stress, 
extreme cold climate, organic pollutants) are not being 
addressed in the present work due to the absence of liter-
ature at agronomic scale.

3.1  |  Heavy metal contaminations

In the EU27 (with UK and without Croatia), Tóth 
et al. (2016) estimated that the area of agricultural lands 
with a concentration of at least one HM above the lower 
guideline value (LGV) set by the Finnish Ministry of 
Environment (MEF, 2007) was 1.37 105 km2.

Phytoremediation consists in growing plants for re-
moving HMs from polluted soils and hemp has extensively 
been studied in this frame (Ahmad et al., 2016; Griga & 
Bjelková, 2013; Guidi Nissim et al., 2018; Kos et al., 2003; 
Kumar et al., 2017; Meers et al., 2005; Rehman et al., 2021; 
Rheay et al.,  2021). Hyperaccumulator species have a 
limited potential of profitability due to their low biomass 
and to their low economic value (Arru et al., 2004), while 
conventional food crops have a limited potential on such 
lands because of sanitary reasons (Rai et al., 2019). Other 
authors instead consider that phytoremediation using in-
dustrial crops such as hemp or flax could only be realised 
in the frame of a long-term remediation (estimated in de-
cades or even centuries), mainly because of the low shoot 

bioconcentration factor ([HM]shoots/[HM]soil), (Citterio 
et al., 2003; Ferrarini et al., 2021; Griga & Bjelková, 2013). 
A low shoot bioconcentration factor, even though unde-
sirable in the frame of phytoremediation, presents two 
main advantages. Firstly, it is considered a major mecha-
nism of tolerance to HMs (Sharma & Chakraverty, 2013). 
Secondly, it limits the restrictions on the use of the bio-
mass as a feedstock for industrial applications that are due 
to excessive HMs contents (Angelova et al., 2004; Linger 
et al., 2002).

At the whole-plant level, many authors have reported 
that hemp tends to accumulate more HMs in the roots than 
in the shoots for cadmium (Citterio et al., 2003; Di Candilo 
et al., 2004; Guidi Nissim et al., 2018; Linger et al., 2005; 
Luyckx et al., 2021; Shi et al., 2009; Shi & Cai, 2009), nickel 
(Citterio et al., 2003; Ferrarini et al., 2021; Guidi Nissim 
et al., 2018), arsenic (Pietrini et al., 2019), lead (Di Candilo 
et al., 2004; Guidi Nissim et al., 2018; Pietrini et al., 2019), 
chromium (Citterio et al., 2003; Ferrarini et al., 2021) and 
vanadium (Pietrini et al.,  2019) (Supplementary mate-
rial  S1). Reports concerning copper and zinc, however, 
appear more arguable. Some authors reported higher con-
centrations of zinc (Luyckx et al., 2021; Shi & Cai, 2010) 
and copper (Bona, Marsano, et al.,  2007; Ferrarini 
et al., 2021; Guidi Nissim et al., 2018) in the roots than in 
the shoots, whereas other authors reported the opposite 
for zinc (Angelova et al., 2004; Guidi Nissim et al., 2018; 
Pietrini et al.,  2019) and copper (Angelova et al.,  2004). 
Overall, these two HMs tend to be more easily translo-
cated than others, which is not surprising given that they 
are micronutrients essential to plant growth. Thallium 
was also reported to easily enter the hemp root system and 
to be easily translocated toward the shoots, although it 
does not have a known role as a micronutrient (Di Candilo 
et al., 2004). Apart from the cases of thallium, zinc, and 
copper, the previously cited reports suggest that hemp 
makes use of a strategy of HM exclusion from its aerial 
parts by strongly limiting their translocation from roots to 
shoots.

Several studies have revealed other mechanisms of 
HM tolerance in hemp, such as increases of anti-oxidants 
(Citterio et al., 2003; Shi et al., 2009) and diverse detoxifi-
cation mechanisms (Arru et al., 2004; Luyckx et al., 2021).

Shi and Cai  (2010) compared the zinc tolerance of 
eight oil crops and concluded that hemp was among the 
most tolerant ones, with low relative decreases of total 
chlorophyll content and of roots and shoots biomass for 
zinc levels of up to 400 mg kg−1 in the growth substrate. 
In a similar experiment involving increasing levels of cad-
mium from 0 to 200 mg kg−1, hemp again showed signs 
of tolerance compared with seven other crops (including 
Brassica rapa, Carthamus tinctorius, Glycine max, and 
Helianthus annuus) (Shi & Cai, 2009).
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The effects of HMs on hemp biomass production 
vary widely in literature (Table  1). Taking the LGV as a 
reference point (MEF,  2007), hemp can be said not to 
display significant decreases of biomass at what can be 
considered relatively high levels of pollution (Angelova 
et al.,  2004; Citterio et al.,  2003; Citterio et al.,  2005; Di 
Candilo et al., 2004). On a soil with HM contents under or 
slightly above the LGV, hemp biomass attained 16 t ha−1 
and 9  t ha−1 of dry matter in two consecutive years of 
cultivation, which is within the usual range of hemp pro-
ductivity reported in literature (Guidi Nissim et al., 2018). 
Hemp is however particularly susceptible to thallium, 
as its biomass productivity decreased by 31% from the 
control when grown on a soil polluted with 7.9 mg kg−1 
of thallium (Di Candilo et al., 2004). Other experiments 
have also shown significant decreases of productivity. On 
a moderately polluted soil in which none of the HMs ex-
ceeded the LGV, hemp biomass significantly decreased 
from the value of the control (Pietrini et al., 2019). Other 
significant decreases of productivity were reported in the 
presence of copper (Bona, Marsano, et al., 2007), cadmium 
(Shi & Cai, 2009), and zinc (Shi & Cai, 2010), all of these 
experiments having been carried out by applying HMs in 
equal or higher concentrations than the LGV.

The diversity of observed responses to HMs can be ex-
plained by several factors: (i) bio-availability of HMs in the 
soils, which is heavily dependent on the soil's physical–
chemical characteristics (Guidi Nissim et al.,  2018; 
Marschner & Rengel,  2012; Taiz & Zeiger,  2010; Walker 
et al., 2003), varied among the previously cited works; (ii) 
The association of different HMs in the various exper-
iments may have led to interactions of HM uptake and 
translocation (Tani & Barrington,  2005) that can hardly 
be distinguished; and (iii) different hemp genotypes may 
have played a prevailing role in the observed differences 
to HM tolerance.

Apart from the effects of HMs on productivity, it is 
also important to know if HMs affect the quality of the 
biomass. In a study by Luyckx et al. (2021), zinc and cad-
mium were reported to significantly affect the expression 
of genes involved in cell wall synthesis. Additionally, lig-
nin levels under zinc treatment were higher than that of 
the control, while under cadmium treatment they were 
lower. According to Citterio et al. (2003), hemp plants ex-
posed to high concentrations of cadmium, chromium, and 
nickel showed an increase of stem lignification, the lignin 
being usually associated with the secondary fibers that are 
shorter and of a lower quality than the primary fibers (Liu 
et al., 2015; Mediavilla et al., 2001; Westerhuis et al., 2019). 
To our knowledge, only Linger et al.  (2002) studied the 
effects of HMs pollution on fiber quality parameters 
at field scale. A hemp crop grown on a highly polluted 
land (102 mgCd  kg−1, 419 mgNi  kg−1, and 454 mgPb  kg−1) 

displayed slightly lower levels of fiber content, fineness 
and resistance to traction compared with samples issued 
from a hemp crop grown on an unpolluted land. By con-
sidering the differences in growing conditions between 
the two crops and by comparing the values obtained with 
those reported in literature, the authors concluded that 
the effects of high levels of cadmium, nickel and lead on 
fiber quality could not be considered significant.

When cultivating hemp, it is also essential to remem-
ber that in the European Union, Δ-9-THC content must 
not exceed the threshold of 0.3% on a dry basis. In a study 
by Citterio et al. (2003) the effect of high HMs contents in 
soil (82 mgCd kg−1, 114.6 mgNi kg−1, 138.8 mgCr kg−1) on 
the Δ-9-THC content of hemp leaves was not significant. 
The results obtained suggest that cultivating hemp on HM 
polluted land does not increase the risk of exceeding this 
threshold.

3.2  |  Soil and land characteristics

Soil characteristics such as low fertility, poor drainage, 
shallowness, unfavourable soil texture, stoniness, salin-
ity, and acidity, together with a steep terrain are essential 
drivers of land marginality (Elbersen et al., 2017) and can 
cause nutritive, water stress or other abiotic stresses such 
as salt stress or root hypoxia.

The main advantage of hemp over other crops is the 
size of its root apparatus, reported to reach at least two 
meters depth in a deep soil (Amaducci, Zatta, et al., 2008). 
However, in unfavourable soils such as shallow soils, 
hemp root development might be hampered. Hemp has 
been classified as being particularly susceptible to soils of 
low rooting depth (80 cm) (von Cossel et al., 2019).

Soils of fine granulometry presenting subsurface com-
paction layers can also severely hamper hemp root devel-
opment, causing it to deviate from a vertical to an L-shape 
(Adesina et al.,  2020; Amaducci et al.,  2015; Amaducci, 
2020; Desanlis et al.,  2013), limiting the access of hemp 
to deep reserves of water and nutrients and reducing the 
anchorage, making the plant more susceptible to lodging. 
Soils of fine granulometry can also lead to water stag-
nation after heavy rainfalls, which was reported to be 
badly supported by juvenile hemp (Amaducci, 2020; Ely 
et al., 2022; Struik et al., 2000). Sankari and Mela (1998) 
experienced a dramatic decrease of hemp establishment 
on a “heavy clay soil” subjected to a heavy rain event 4 days 
after sowing. The passage of agricultural machinery also 
had negative effects on hemp establishment, and Sankari 
and Mela (1998) concluded that “hemp is highly sensitive to 
minor changes in seedbed conditions.”.

Sandy soils may also have deleterious effects on hemp 
growth. In a two-site experiment involving a coarse sandy 
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soil (5: 4: 17: 71% of clay: silt: fine sand: coarse sand) and 
a sandy loam soil (8: 11: 42: 36% of clay: silt: fine sand: 
coarse sand), Manevski et al.  (2017) reported that hemp 
establishment failed two times out of three on the coarse 
sandy soil site. The sole successful cropping of hemp on 
this site produced little biomass (about 5.0 t ha−1) whereas 
hemp cropping on the sandy loam site produced from 12.1 
to 14.4  t ha−1 of biomass. All other crops tested in this 
trial performed well on coarse sandy soil, highlighting the 
susceptibility of hemp to extreme soil textures. Adesina 
et al. (2020) considered hemp unsuited to heavy clay and 
sandy soils due to the fact that these soils retain either too 
much or too little water, in accordance with von Cossel 
et al.  (2019) who classified hemp as being unsuited for 
growth on coarse sand and on heavy clay soils.

Hemp susceptibility to stoniness is hard to evaluate. To 
our knowledge, only Faux et al. (2013) experimented with 
hemp cultivation on stony soils. They reported stem yields 
ranging from 7.0 to 10.8  t ha−1, which are similar stem 
yields to those usually reported in literature.

Information on the suitability of hemp as a crop for 
hilly and mountain areas are scarce and inconsistent. In 
a recent survey that involved 30 Italian hemp farmers, 
hemp was reported to be a “very good crop” for growth 
on mountain territories (Giupponi et al., 2020), in agree-
ment with Desanlis et al. (2013), who described the moun-
tain microclimates as perfectly suiting hemp. von Cossel 
et al. (2019) instead classified hemp as unsuited for culti-
vation on steep terrains. A major issue faced by hemp on 
steep terrain may lie in losses during harvest. For instance, 
in the frame of the GRACE BBI project, a hemp crop was 
grown in the Apennines of Northern Italy, on steep ter-
rain. Small plots were harvested by hand at seed maturity 
for determination of stem and seed yields and the remain-
ing crop was harvested with a combine harvester specific 
to mountain areas (Laverda 3350). Stem and seed yields 
of hand-harvested plots reached 3.4 t ha−1 and 0.5 t ha−1, 
while the yields of the mechanically harvested plots dras-
tically decreased to 1.0 t ha−1 and 0.3 t ha−1, respectively. 
Uneven terrain forced the harvester to raise the stubble 
height to about 30 cm and also led to inefficient swathing 
and bailing. Additionally, an inefficient separation of the 
inflorescences from the stems was also observed, an issue 
that was already reported for hemp because of the inter-
plant heterogeneity of development (Chen & Liu, 2003).

3.3  |  Water scarcity

Water shortage is a major issue in cropping activities. It 
can occur during a temporary drought caused by weather 
variability or under predominantly dry climates. The arid-
ity index (AI—annual ratio of precipitations to potential E
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evapotranspiration) is used to quantify the climatic dry-
ness, AI values lower than 0.5 being considered as describ-
ing an arid climate (Jones et al., 2014; Lian et al., 2021), 
for qualifying a land as being “severely affected by too dry 
climatic conditions” (Jones et al.,  2014), or for qualify-
ing a land as marginal because of climatic dryness (von 
Cossel et al., 2019). In Europe, semi-arid areas are mainly 
concentrated in the Mediterranean basin and overlap 
the Mediterranean climate (Csa and Csb in the Köppen-
Geiger climate classification) in Southern Spain, Southern 
Italy, Greece and on Mediterranean islands (Alessandri 
et al.,  2014; Beck et al.,  2018; Lian et al.,  2021). The 
Mediterranean climate is characterized by hot and dry 
summers (Beck et al.,  2018), covers approximately 6.2 
105  km2 and is expected to increase to 7.4 105  km2 by 
the end of the 21st century under RCP4.5 scenario, par-
ticularly expanding northward and eastward from the 
actual distribution of Mediterranean climate in Europe 
(Alessandri et al., 2014). Concomitantly, a fraction of the 
areas today under Mediterranean climate are expected to 
turn toward arid climate (B in the Köppen-Geiger climate 
classification) by the end of the 21st century (Alessandri 
et al., 2014). Although food crops are currently being cul-
tivated in an economically viable way in Mediterranean 
regions of Europe, the climatic projections for this re-
gion may well affect the profitability of cropping activi-
ties due to yield reductions and irrigation requirements. 
In addition, interactions between dryness and other 
socio-economic and bio-physical factors may lead to land 
marginality.

As a short-day species, the hemp growing cycle occurs 
during summer when rainfalls do not compensate the ref-
erence evapotranspiration during the whole growth period 
(Di Bari et al., 2004). Overall, hemp water requirements 
are usually reported to range between 250 and 700 mm 
during the growing season, depending on the duration of 
the growth cycle and on the evapo-transpirative demand 
(Amaducci et al., 2000; Amaducci et al., 2015; Cosentino 
et al., 2012; Cosentino et al., 2013; Di Bari et al., 2004).

In Mediterranean climate, hemp aboveground bio-
mass productivity has been reported several times to be 
significantly affected by decreases of water availability 
during the growing season, decreasing by about 20% to 
25% from the value of the well-irrigated control under 
low levels of irrigation (Amaducci et al., 2000; Cosentino 
et al., 2013; Di Bari et al., 2004; García-Tejero et al., 2019; 
Lisson & Medham, 1998) (Table 2; Supplementary ma-
terial S2). Although significant, these decreases do not 
imply critical crop failures, and the yield losses induced 
by water shortages might be partially compensated with 
the water savings of reduced irrigation. Only Bahador 
and Tadayon  (2020) reported critical decreases of abo-
veground biomass and seed productivities (decreases 

of 71.3% and 81.6%, respectively, from the value of the 
well-irrigated control) under Mediterranean climate, al-
though they did not report the amounts of water supply 
for the different treatments. Strong decreases of abo-
veground biomass and seed productivities were also re-
ported in an arid climate (Bsk) between two irrigation 
treatments: a well-irrigated treatment and a dry treat-
ment in which the crop was only irrigated during the 
seedling establishment phase. As a mean of 10 cultivars, 
aboveground biomass and seed productivities decreased 
respectively by 60.3% and 67.0% from the values of the 
control (Campbell et al., 2019). Hemp seed yield appears 
to be particularly susceptible to water availability during 
the seed ripening phase (Bahador & Tadayon,  2020; 
Campbell et al., 2019) and was also recently reported to 
be susceptible to high temperatures (Baldini et al., 2020; 
Ferfuia et al., 2021).

The data provided by Herppich et al. (2020) appear as 
an exception, as hemp aboveground biomass productivity 
reached 10.0 and 17.9 t ha−1 for the cultivars “Ivory” and 
“Santhica 27,” respectively, during a hot and dry summer. 
The rainfalls provided only 56 mm of water during the 
growing season and were supplemented with 10 mm of 
irrigation during germination.

Overall, hemp appears to be relatively tolerant to tem-
porary drought, but prolonged periods of water shortage 
under high evapotranspirative demand can lead to criti-
cal decreases of productivity (Tang et al.,  2018). Several 
authors have reported that hemp is a water stress toler-
ant crop (Bourdot et al., 2017; García-Tejero et al., 2020; 
Rehman et al., 2013; Satriani et al., 2021; Sipos et al., 2010; 
van den Broeck et al.,  2008; Viswanathan et al.,  2020): 
this might be due to its capacity of developing a deep root 
system (Amaducci, Zatta, et al., 2008). When hemp-root 
development is not impaired by soil characteristics (see 
Section 3.2), hemp can access deep water reserves in soils. 
However, such depths are not attained by hemp's root ap-
paratus during the first stage of its growth, and the status of 
water stress tolerant crop is therefore attained later during 
the growing season (Adesina et al., 2020; Ehrensing, 1998; 
Fike,  2016). In fact, hemp was reported to be particu-
larly susceptible to water shortage during the phases of 
germination, emergence and during the early stages of 
its growth (Struik et al., 2000). This is particularly high-
lighted by the fact that most of the studies investigating 
hemp's tolerance to water stress at agronomic scale irri-
gated during the first stages of its growth and only initiated 
to apply the different irrigation regimes at a later growth 
stage (Bahador & Tadayon,  2020; Campbell et al.,  2019; 
Cosentino et al., 2013; García-Tejero et al., 2019; Herppich 
et al., 2020).

The effect of water stress on fiber quality has only 
been addressed in a few publications. Schäfer and 

 17571707, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcbb.12979 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [08/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1012  |      BLANDINIÈRES and AMADUCCI

T
A

B
L

E
 2

 
Ef

fe
ct

s o
f w

at
er

 a
va

ila
bi

lit
y 

on
 h

em
p 

ab
ov

eg
ro

un
d 

bi
om

as
s a

nd
 se

ed
 p

ro
du

ct
iv

iti
es

 u
nd

er
 M

ed
ite

rr
an

ea
n 

an
d 

ar
id

 cl
im

at
es

. K
öp

pe
n-

G
ei

ge
r c

lim
at

e 
ty

pe
s a

tta
ch

ed
 to

 e
ac

h 
en

vi
ro

nm
en

t 
w

er
e 

de
te

rm
in

ed
 u

sin
g 

th
e 

R 
co

de
 a

nd
 ra

st
er

 fi
le

s p
ro

vi
de

d 
on

 th
e 

fo
llo

w
in

g 
w

eb
sit

e:
 h

ttp
://

ko
ep

p​e
n-

ge
ig

er
.v

u-
w

ie
n.

ac
.a

t/
pr

es
e​n

t.h
tm

, o
n 

th
e 

ba
se

 o
f t

he
 w

or
k 

of
 R

ub
el

 e
t a

l. 
(2

01
7)

. D
at

a 
of

 se
ed

 
pr

od
uc

tiv
ity

 w
er

e 
no

t p
re

se
nt

ed
 in

 th
e 

st
ud

y 
of

 B
ah

ad
or

 a
nd

 T
ad

ay
on

 (2
02

0)
 a

nd
 w

er
e 

es
tim

at
ed

 fr
om

 th
e 

va
lu

es
 o

f o
il 

yi
el

d 
an

d 
se

ed
 o

il 
co

nt
en

t. 
Tr

ea
tm

en
ts

 m
ay

 re
fe

r t
o 

di
ffe

re
nt

 ir
rig

at
io

n 
re

gi
m

es
 

de
pe

nd
in

g 
on

 th
e 

re
fe

re
nc

e 
an

d 
ar

e 
al

w
ay

s r
an

ke
d 

fr
om

 th
e 

tr
ea

tm
en

t w
ith

 th
e 

hi
gh

es
t l

ev
el

 o
f w

at
er

 a
va

ila
bi

lit
y 

(to
p)

 to
 th

e 
on

e 
w

ith
 th

e 
lo

w
es

t w
at

er
 a

va
ila

bi
lit

y 
(b

ot
to

m
), 

w
ith

in
 e

ac
h 

re
fe

re
nc

e.
 

W
U

E 
re

fe
rs

 to
 th

e 
w

at
er

 u
se

 e
ffi

ci
en

cy
 (g

 o
f b

io
m

as
s p

ro
du

ce
d 

pe
r l

itr
e 

of
 w

at
er

 co
ns

um
ed

) p
re

se
nt

ed
 b

y 
th

e 
re

fe
re

nc
e 

or
 ca

lc
ul

at
ed

 a
s t

he
 ra

tio
 o

f a
bo

ve
gr

ou
nd

 b
io

m
as

s p
ro

du
ce

d 
to

 th
e 

am
ou

nt
 o

f 
w

at
er

 u
se

d,
 e

xc
ep

t i
n 

th
e 

ca
se

 o
f t

he
 p

ub
lic

at
io

n 
of

 D
i B

ar
i e

t a
l. 

(2
00

4)
, w

he
re

 th
e 

W
U

E 
re

fe
rs

 to
 th

e 
ra

tio
 o

f t
ot

al
 b

ar
k 

pr
od

uc
ed

 to
 w

at
er

 c
on

su
m

ed

E
nv

ir
on

m
en

t
C

lim
at

e
Y

ea
r

C
ul

ti
va

r
T

re
at

m
en

t

W
at

er
 

su
pp

ly
 

(m
m

)

A
bo

ve
gr

ou
nd

 b
io

m
as

s
Se

ed
s

W
U

E
 

(g
 L

−
1 )

R
ef

er
en

ce
Pr

od
uc

ti
vi

ty
 

(t
D

M
 h

a−
1 )

%
 fr

om
 

th
e 

 
co

nt
ro

l
Pr

od
uc

ti
vi

ty
  

(t
D

M
 h

a−
1 )

%
 fr

om
 

th
e 

 
co

nt
ro

l

It
al

y 
(S

ic
ily

)a
C

sa
/ M

ed
ite

rr
an

ea
n

20
04

Fu
tu

ra
 7

5
I 1

00
44

0
12

.0
10

0.
0

2.
73

C
os

en
tin

o 
et

 a
l. 

(2
01

3)
I 5

0
35

5
11

.1
92

.3
3.

13
I 2

5
31

2
9.

8
81

.9
3.

15
I 0

26
9

9.
3

77
.2

3.
45

Ir
an

 (N
or

th
)b

C
sa

/ M
ed

ite
rr

an
ea

n
20

14
–2

01
5

un
pr

ec
is

ed
I 1

00
4.

65
10

0.
0

1.
32

10
0.

0
Ba

ha
do

r a
nd

 
Ta

da
yo

n 
(2

02
0)

I 8
0

3.
7

79
.6

0.
83

63
.1

I 6
0

2.
85

61
.3

0.
41

31
.3

I 4
0

1.
8

38
.7

0.
24

18
.4

It
al

y 
(A

pu
lia

)b
C

sa
/ M

ed
ite

rr
an

ea
n

19
99

– 20
00

–
20

01

Fi
br

an
ov

a/
re

d 
pe

tio
le

/
K

om
po

lti

I 1
00

61
3

6.
2

10
0.

0
1.

04
D

i B
ar

i e
t a

l. 
(2

00
4)

I 6
6

44
1

5.
6

95
.2

1.
28

I 5
0

33
8

4.
4

80
.2

1.
31

I 3
3

26
2

4.
4

79
.2

1.
67

U
SA

 (C
ol

or
ad

o)
c

Bs
k/

A
ri

d
20

16
Fé

ri
m

on
 1

2
I 1

00
45

1
6.

1
10

0.
0

1.
28

10
0.

0
1.

36
C

am
pb

el
l 

et
 a

l. 
(2

01
9)

D
ia

na
45

1
5.

2
10

0.
0

0.
92

10
0.

0
1.

15
C

ar
m

al
eo

nt
e

45
1

7.
0

10
0.

0
1.

36
10

0.
0

1.
56

A
ve

ra
ge

e
45

1
6.

3
10

0.
0

0.
98

10
0.

0
1.

39
Fé

ri
m

on
 1

2
I 0

20
0

2.
7

44
.7

0.
55

43
.0

1.
37

D
ia

na
20

0
1.

7
33

.1
0.

22
23

.9
0.

86
C

ar
m

al
eo

nt
e

20
0

2.
3

33
.3

0.
31

22
.5

1.
16

A
ve

ra
ge

e
20

0
2.

5
39

.7
0.

33
33

.0
1.

24
Sp

ai
n (A

nd
al

ou
s)

d
C

sa
/ M

ed
ite

rr
an

ea
n

20
12

–2
01

3
C

ar
m

a/
Er

m
es

I 1
00

42
0

9.
8

10
0.

0
2.

33
G

ar
cí

a-
Te

je
ro

 
et

 a
l. 

(2
01

9)
I 7

5
33

7
7.

7
79

.3
2.

31
A

us
tr

al
ia

 
(T

as
m

an
ia

)
C

sb
/ M

ed
ite

rr
an

ea
n

19
95

–1
99

6
K

om
po

lti
I 3

0
46

8
15

.5
10

0.
0

3.
32

Li
ss

on
 a

nd
 

M
ed

ha
m

 (1
99

8)
I 6

0
53

5
15

.6
10

0.
6

2.
92

I 9
0

52
4

14
.5

93
.5

2.
77

I 1
20

42
2

14
.8

95
.5

3.
43

I 0
35

9
12

.1
78

.1
3.

39

 17571707, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcbb.12979 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [08/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://koeppen-geiger.vu-wien.ac.at/present.htm


      |  1013BLANDINIÈRES and AMADUCCI

Honermeier  (2006), in a 2-year experiment, found that 
plant height, stem diameter, layer of secondary fiber 
cells, proportion of cell lumen surface over that of the 
whole cell, and cell wall thickness were lowest in the 
driest year. Plant height and mean stem diameter were 
also significantly reduced under deficit irrigation in an 
arid environment (Campbell et al., 2019). From a green-
house experiment, water shortage induced an increase in 
fiber dislocation and a reduction of fiber tensile strength 
(Thygesen & Asgharipour, 2008). In general, water stress 
appears to lead to a reduction of fiber quality at a physio-
logical scale, but this might be compensated at field scale 
by the deleterious effects of water shortage on individual 
plant weight, as this parameter induces the secondary 
growth that negatively affects the overall quality of the 
fiber (Westerhuis et al., 2019). This remains hypothetical 
and requires further scientific assessment.

On cannabinoid content, the variability of water avail-
ability over the growing season was never reported to 
induce an increase of THC content over the 0.3% thresh-
old (Calzolari et al., 2017; Campbell et al., 2019; Di Bari 
et al.,  2004; García-Tejero et al.,  2019), suggesting that 
water shortage would not increase the risk of exceeding 
the legislative threshold in effect in the EU.

4   |   ADAPTING THE PRODUCTION 
STRATEGY AND CROP 
MANAGEMENT TO MARGINAL 
LANDS

As discussed in Section 2, hemp can be cultivated follow-
ing diverse production typologies, each being character-
ised by specific crop management practices (Blandinières 
& Amaducci,  2022), providing a lever for action for 
adapting the cultivation of hemp to given bio-physical 
constraints.

4.1  |  Heavy metals

The main constraint to hemp production on HM polluted 
soils lies in the restrictions on the potential uses of hemp 
biomass. HM uptake by the crop indeed leads to contami-
nations of the products (Supplementary material  S1). If 
in most of the literature, hemp is considered as a suit-
able crop for growth on HM contaminated soils (Angelova 
et al.,  2004; Citterio et al.,  2003; Di Candilo et al.,  2004; 
Linger et al., 2002; Pietrini et al., 2019; Rheay et al., 2021); 
for its cultivation to be economically viable, its products 
must be able to be used. The use of hempseed for food and 
feed purposes faces the same problems as conventional food 
crop, especially as hempseeds are relatively strong sinks E
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for zinc, copper, and nickel (Angelova et al., 2004; Citterio 
et al., 2005; Linger et al., 2002). On the other hand, non-
food applications for hemp oil (e.g. biodiesel or industrial 
solvents) do not seem economically valuable options, owing 
to the limited market value of such oil. In general, the use of 
hemp biomass for bioenergetic applications is of low prof-
itability (Burczyk et al., 2008; Das et al., 2017; Rice, 2008) 
and Burczyk et al. (2008) considered it better to use the by-
products for such applications (e.g. shives destined to solid 
biofuel production). As a matter of fact, the economic poten-
tial of hemp is higher if its biomass is destined for industrial 
applications rather than bioenergy, due to the difference in 
market value of the raw material produced.

The use of high-quality hemp fiber destined to high 
added-value applications might overcome the problem of 
economic viability posed by the impossibility to use seeds 
and threshing residues. The fiber price indeed depends 
on its quality and end use. Sold at around 350–400 € t−1 
for paper production (Vilcina et al., 2014), its price rises 
to 550 to 800  €  t−1 for technical applications (Grégoire 
et al., 2021; Pecenka et al., 2012; Vilcina et al., 2014) and 
can reach about 1500–1750 € t−1 if the fiber is of very high 
quality (Bourmaud et al.,  2018). Considering that hemp 
fiber quality was not particularly affected by high levels 
of cadmium, nickel, and lead in soils (Linger et al., 2002), 
and should further field scale research confirm these find-
ings and extend them to other HMs; then a single-use 
hemp crop for high-quality fiber production could be con-
sidered for cultivation on HM polluted lands. This produc-
tion should, however, be restricted to bio-based composite 
production as HM contents in hemp fiber can exceed the 
standards of the Öko-Tex-Initiative for textile applications 
and the legislative thresholds of the EU defined for cloth-
ing applications (Linger et al., 2002; Angelova et al., 2004; 
EU commission regulation, 2018/1513).

Several studies have demonstrated the existence of ge-
netic variability across diverse hemp genotypes (Di Candilo 
et al., 2004; Huang et al., 2019; Shi et al., 2012) in particu-
lar across Chinese genotypes that are not listed on the EU's 
list of commercial cultivars. As an example, the accessions 
“Xingtai” and “Uso 31” displayed respective decreases of 
7% and 85% of shoot biomass from the value of the control, 
when submitted to cadmium treatment in a study by Shi 
et al. (2012). The use of such variability was described as a 
potential lever for action for growing hemp on HM polluted 
lands (Di Candilo et al., 2004) but requires to better charac-
terise HM tolerance across European hemp cultivars.

4.2  |  Soil and land characteristics

On heavy clay soil, the potentially high mortality rate in 
hemp population during plant establishment can lead to 

strong decreases of plant density (Sankari & Mela, 1998), 
which can ultimately affect the fiber quality (Westerhuis 
et al.,  2019). Therefore, dual-  and multi-purpose hemp 
seem more suited on heavy clay soil than single-use fiber 
production. Soil preparation, which is always impor-
tant for hemp, becomes critical on heavy clay soils on 
which a deep autumn/winter ploughing and harrowing 
right before sowing has been recommended (Amaducci 
et al., 2015; Blandinières & Amaducci, 2022). On coarse 
sandy soil, the only available literature reported ei-
ther crop failures or particularly low yields (Manevski 
et al., 2017) which does not allow to draw conclusions on 
the optimal production strategy but rather tend to imply 
that hemp should be avoided on such soils. In mountain 
areas, due to the relatively high stem losses during har-
vest, swathing, and baling, dual- and multi-purpose might 
be the most suited production strategies.

4.3  |  Water scarcity

It is clear that irrigation must be contemplated when cul-
tivating hemp in a dry climate, in particular after sow-
ing (Cosentino et al., 2012; Di Bari et al., 2004; Herppich 
et al., 2020; Ranalli & Venturi, 2004). To reduce the eco-
nomic cost of irrigation, Di Bari et al.  (2004) proposed 
two management strategies for hemp cultivation in a 
Mediterranean climate. Firstly, the irrigation manage-
ment of hemp should not aim to fully restore the water 
lost through evapotranspiration, but rather be limited 
to a partial restoration of the water losses, by supplying 
water up to 66% of the total soil available water in the 
first 40 cm of the topsoil layer. In line with this proposi-
tion, Cosentino et al.  (2013) did not find significant dif-
ferences of aboveground biomass productivity between 
irrigation treatments consisting in 100% and 50% res-
toration of maximum evapotranspiration (ETM). The 
second strategy proposed by Di Bari et al.  (2004) lies in 
early sowings, similarly to the strategy used for increas-
ing the transpiration efficiency of cereal crops (Richards 
et al., 2002). By anticipating the sowing date, hemp would 
benefit from higher levels of water availability and from 
a reduced evapo-transpirative demand, in particular dur-
ing its juvenile phase when it is particularly susceptible 
to water scarcity. Lower temperatures would decrease the 
risks of heat stress, which is thought to limit hemp pho-
tosynthesis (Cosentino et al., 2013; Herppich et al., 2020). 
However, early-sowing can result in pre-flowering lead-
ing to short vegetative phases and to low biomass accu-
mulation (Faux et al.,  2013; Tang et al.,  2016) because 
flowering is under strong photoperiodic control in 
hemp (Amaducci, Colauzzi, et al.,  2008). Both Di Bari 
et al.  (2004) and Cosentino et al.  (2012) have addressed 
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the feasibility of early sowing in a Mediterranean climate 
for tackling the issue of the water shortages. By sowing 
on the 28 February, Di Bari et al.  (2004) achieved opti-
mum bark yields (7.6 t ha−1) with a strongly reduced water 
consumption over conventional sowing dates. Contrary to 
this, Cosentino et al. (2012) reported dramatically low bio-
mass yields ranging from 1.6 to 3.1 t ha−1 for four hemp 
cultivars sown on the 10th of March, in Sicily, and dem-
onstrated the critical importance of the genotype choice 
and of its interactions with sowing date and latitude in the 
frame of an early-sowing strategy, which requires further 
assessment for given environments.

A possible solution for the cultivation of hemp in water 
limited environments is the adoption of a single-purpose 
crop dedicated to fiber production if the availability of 
adequate harvesting equipment and processing facilities 
allows it. Harvesting at the end of flowering rather than at 
seed maturity would reduce the duration of the cropping 
cycle and thereby, the crop's water requirements. Limiting 
irrigation to critical developmental phases (germination 
and plant establishment) and avoiding critical water stress 
appears to be an interesting strategy for limiting yield 
losses and irrigation cost.

5   |   IS HEMP SUITABLE FOR 
MARGINAL ENVIRONMENTS?

Although being considered an adaptable species able to 
grow in harsh environments, (Bourdot et al.,  2017; Cao 
et al., 2021; Cheng et al., 2016; García-Tejero et al., 2020; 
Mohan et al.,  2015; Rehman et al.,  2013; Rehman 
et al., 2021; Rheay et al., 2021; Satriani et al., 2021; Sipos 
et al., 2010; van den Broeck et al., 2008), in this review, 
hemp appears as being relatively susceptible to bio-
physical constraints, especially soil characteristics such as 
shallowness, heavy clay, and coarse sandy soils (Adesina 
et al., 2020; Manevski et al., 2017; Sankari & Mela, 1998; 
von Cossel et al., 2019). On coarse sandy soils, hemp es-
tablishment either failed or produced a low biomass com-
pared with a more favourable soil, while all the other crops 
tested grew well (Manevski et al., 2017). Several authors 
indeed reported hemp as being highly susceptible to soil 
quality issues, requiring deep, well-drained, loamy soils 
rich in organic matters and nutrients (Adesina et al., 2020; 
Burczyk et al., 2008; Desanlis et al., 2013; Ehrensing, 1998; 
Fike, 2016). In fact, traditional hemp cultivation was car-
ried out in the most productive and fertile soils. In moun-
tain areas, hemp might be able to be cultivated sustainably 
in the frame of dual- and multi-purpose productions, al-
though legislative regulation might prevent the harvest of 
threshing residues in given countries, thereby limiting the 
potential added-value of the crop.

On HM polluted soils, hemp appears as a relatively po-
tent crop if the producer targets a single-use high-quality 
fiber production destined to bio-based composites applica-
tions that are not subject to legislative restrictions on HM 
contents, while providing an important added-value to the 
raw fiber. In field-scale studies, HMs have in general a low 
effect on hemp yield, and the fiber quality was not signifi-
cantly affected in a soil polluted with high levels of nickel, 
lead, and cadmium (Linger et al., 2002). The effects of other 
HMs on fiber quality at field scale still need to be assessed 
to clearly determine the feasibility of hemp cultivation on 
polluted lands. The production of seeds and threshing resi-
dues would not be suited due to legislative issues regarding 
their HM contents. Although several authors have consid-
ered the potential of hemp for phyto-remediation, this re-
view highlights that such a process would be relatively slow 
(Citterio et al., 2003; Griga & Bjelková, 2013). The use of 
HMs tolerant cultivars displaying low levels of HMs uptake 
and translocation appears to be the most suited strategy for 
cultivating hemp on polluted soils, but it conflicts with a 
fast and efficient phyto-remediation process, which would 
be better achieved by using hyperaccumulator species in 
the frame of soil restoration programs.

In the frame of a cultivation under dry climates, hemp 
might be suited under specific conditions. Long periods 
of water shortage under a high evaporative demand can 
dramatically affect the yield (Bahador & Tadayon,  2020; 
Campbell et al., 2019). This is particularly true if the hemp 
crop is grown on a sandy soil that does no retain water, 
or if it is grown on a shallow soil or on a soil presenting 
a compaction layer preventing the development of the 
taproot. Under such combinations of adverse conditions, 
hemp does not appear to be a suited crop. Instead, if hemp 
is grown on a favourable soil, it can sustain a short-time 
drought once established because of its deep taproot. The 
adoption of several strategies (targeting a single-use fiber 
production, early sowing, irrigation during critical devel-
opmental stages and for avoiding deadly water stress by 
aiming at a partial fulfilment of water restoration) might 
limit water consumption while allowing sustainable 
yields. Irrigating in a dry climate is still a pre-requisite to 
avoid crop failure.

This review highlights that the viability of hemp cul-
tivation on marginal lands requires adaptations to the 
production strategy, which in turn is possible because of 
the wide diversity of products hemp can provide, as well 
as the genetic diversity present in hemp germplasms. 
Overall, if hemp can be a profitable crop when grown in 
marginal conditions, it is due to the fact that its biomass 
can reach a relatively high market value when tailored to a 
specific end-use (e.g. high-quality fiber for bio-based com-
posites or textile productions, seed for food purposes or 
inflorescences for medicinal applications). Despite having 
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often been studied in the scope of bioenergy production 
(Burczyk et al., 2008; Das et al., 2017; Kreuger et al., 2011; 
Li et al., 2010; Parvez et al., 2021; Prade et al., 2011; Rheay 
et al., 2021; Seleiman et al., 2013; Viswanathan et al., 2021; 
Zhao et al., 2020), the cultivation of hemp for this purpose 
does not appear to be sustainable because of the low mar-
ket value of raw biomass for such destinations (Burczyk 
et al.,  2008; Das et al.,  2017); this is particularly true if 
hemp is grown on marginal lands that will likely affect 
the biomass yield. Perennial bioenergy crops are more 
suited for bioenergy production. Even though their estab-
lishment costs can be relatively high, the input costs for 
these crops over the whole production cycle are relatively 
low (McCalmont et al., 2017) compared with annual crops 
that require re-establishment and fertilisation every year. 
The cultivation and harvest of these crops over the whole 
growing cycle is relatively easy while hemp, although it 
might be relatively easy to sow and to grow, can present 
difficulties at harvest if the stem becomes too lignified 
(Desanlis et al., 2013) or because the fiber can wrap itself 
around the rotative organs of the harvesters and of the 
balers (author's experience). Additionally, as an annual 
crop, hemp must be integrated into a sustainable rotation 
system which might be complex to develop on low pro-
ductivity lands. Hemp certainly has a high potential for 
agricultural systems on marginal lands, although overall, 
it cannot be denied that it is best suited for being integrated 
into conventional agricultural systems in which it can be 
beneficial for food crops (Gorchs et al., 2017) by disrupting 
the weeds cycles (Desanlis et al., 2013), or by increasing 
the soil quality (Zegada-Lizarazu & Monti, 2011).

Several authors have addressed the possibility of 
breeding new cultivars for HM (Ahmad et al., 2016; Bona, 
Francesco, et al., 2007; Bona, Marsano, et al., 2007) and 
water stress (Herppich et al., 2020) tolerance. Griga and 
Bjelková  (2013) have instead questioned the feasibility 
of breeding for HM tolerance considering the “cost to 
success” of this approach, while Meynard et al.  (2013) 
outlined how the multiplicity of applications of hemp 
leads to a dispersion of hemp breeding activities in a sec-
tor that lacks resources. Breeding hemp with a high tol-
erance to HMs would be a niche market that would not 
justify the costs of the breeding program. Instead, using 
existing commercial cultivars displaying traits of toler-
ance to HMs would appear to be a more viable strategy. 
Breeding for water stress tolerance would, however, ap-
pear more relevant especially considering the projections 
of climatic evolution for the next decades (IPCC 2018). 
Because no breeding programmes have yet addressed 
this trait (Salentijn et al., 2015; Thouminot, 2015), there 
might be room for increased water stress tolerance in 
hemp, especially considering that recent studies have 
highlighted the existence of a wide variability of water 

stress tolerance within hemp germplasms of both in-
dustrial and drug types (Campbell et al.,  2019; Babaei 
& Ajdanian,  2020; Blandinières et al.,  2021; Sheldon 
et al., 2021).

Although this review does not precisely define a 
breakeven point of productivity under which hemp can-
not be profitable, we believe it can pave the way to a 
dedicated work that would make use of Life Cycle Cost 
Analyses coupled to Sensitivity Analyses, considering the 
most adapted production strategies and crop management 
adaptations defined in the present work.
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